CountryData Technologies for Data Exchange

Developing a Data Model

Figures vs Data

Series	1990	1992	1994	1996	1998	1999	2000	2002	2006	2007	2008	2009	201
Rwanda													
MDG 🌮 Population below \$1 (PPP) per day, percentage Last updated: 02 Jul 2012							74.6 ^{1,3}		72.1 ^{1,3}				63.2
State of Palestine						1 11		N 72		2 - X			
Population below \$1 (PPP) per day, percentage Last updated: 02 Jul 2012										0.4 ^{1,2,3}		0.0 ^{1,2,3}	
Thailand													
Population below \$1 (PPP) per day, percentage Last updated: 02 Jul 2012	11.6	8.61,3	4.1	2.51,3	2.1	3.21,2	3.01.3	1.6 ^{1,3}	1.0		0.4	0.4	

- Figures by themselves are meaningless.
- For data to be usable, it must be properly described. The descriptions let users know what the data actually represent.

Developing a Data Model for SDMX Exchange

- In some aspects similar to a developing a relational database
- In SDMX, data model is represented by a Data Structure Definition.
 - The "shape" of SDMX DSD is roughly similar to star schema.
- To design a DSD, we first need to find *concepts* that identify and describe our data.

Concept

- "A unit of knowledge created by a unique combination of characteristics"*
- Each concept describes something about the data.
- Concepts should express all relevant data characteristics.

Identifying Concepts

		1								Unit M	ultip	ie
										•		
		1-1 Total mid-y	/ear populati	on - Popula	ation totale	au milieu d	le l'année					
						1005				Thousand		ノ
Country - Pays			1980	1985	1990	1995	1999	2000	2001	2002	2003	
Angola			6993	8754	9194	11072	12692	13134	13533	13942	14366	
Botswana			906	1083	1276	1487	1529	1541	1549	1552 2065	1565	
Lesotho			1339 6183	1538 7340		riodo	2037 11270	2035 11308	2050 11554	11806	2080 12064	
Malawi Mauritius - Maurice	Dof Ar	~~	966	1020		riod	11270	1161	11554	1178	12064	
Mozambique	Ref. Ar	ea	12095	13711	14187	16004	17808	18292	18616	18946	19283	
Namibia - Namibie	****		1030	1518	1349	1540	17000	1757	1787	1817	1848	
South Africa			29170	33043		41465	42902	43309	43634	43966	44306	
Swaziland.			560	664	744	855	910	925	933	942	950	
Zambia - Zambie			5738	2 7006	8152	9456	(10218)	10421	10639	10683	11092	
Zimbabwe			7126	8292	9903	11261	12333	12627	12843	13065	13292	
Southern Africa, Total -												
Afrique de australe, totale			72106	83969	94387	107426	114561	116510	118305	119962	122033	

Dimension

- Which of the concepts are used to identify an observation?
 - Indicator
 - Reference area
 - Period
- When all 3 are known, we can unambiguously locate an observation in the table.
- In SDMX such concepts are called **dimensions**.
 - A dimension is similar in meaning to a database table's primary key field.

Measure

- Observation Value represents a concept that describes the actual values being transmitted.
- In SDMX, such a concept is called **measure**.
- Measure is usually represented by concept **OBS_VALUE**.

Attribute

- In our example, **Unit Multiplier** represent additional information about observations.
- This concept is not used to identify a series or observation.
- Such concepts in SDMX are called attributes.
 - Not to be confused with XML attributes!
 - Similar to a database table's non-primary key fields.

Dimension or Attribute?

- Choosing the role of a concept has profound implications on the structure of data.
- Concepts that identify data, should be made dimensions. Concepts that provide additional information about data, should be made attributes.
- If a concept is a dimension, it is possible to have time series that are different only in the value of this concept.

Special Dimensions

- **TIME** dimension provides observation time. If a DSD describes time series data, it must have one TIME dimension.
- FREQUENCY dimension describes interval between observations. If there is a TIME dimension, one other dimension must be marked as FREQUENCY dimension.

Group Exercise 1: Identifying concepts

- Identify concepts in the table
- Mark each concept as:
 - Dimension
 - Time Dimension
 - Measure
 - Attribute

Representation

- When data are transferred, its descriptor concepts must have valid values.
- A concept can be
 - Coded
 - Un-coded with format
 - Un-coded free text

Code

- "A language-independent set of letters, numbers or symbols that represent a concept whose meaning is described in a natural language."
- A sequence of characters that can be associated with descriptions in any number of languages.
 - Descriptions can be easily updated without disrupting mappings or other components of data exchange.

Code List

- "A predefined list from which some statistical coded concepts take their values."
- A code list enumerates all possible values for a concept or set of concepts
 - Sex code list
 - Country code list
 - Indicator code list, etc

Code List: Some Examples

Code Description						
AG_LND_FRST	LND_FRST Proportion of and area covered by forest					
DC_AID_LLDC ODA received in landlocked developing countries						
DC_AID_LLDCG ODA received in landlocked developing countries as a percentage of their GNI						
DC_AID_SIDS	ODA received in small island developing states					
DC AID SIDSG ODA received in small island developing states as a percentage of their GNI						
DC HPC COMR	Debt relief committed under HIPC Initiative, cumulative	<u> </u>				
DC HPC MDRI	I Joht reliet delivered in tull linder IVII IB/Linitiative cumulative		Descript			
	bebt feller delivered in fan ander MDR initiative, eundative		Aruba			

Code	English Description	French Description
1	Africa	Afrique
2	America, North	Amérique du Nord
3	America, South	Amérique du Sud
4	Asia	Asie
5	Europe	Europe
6	Oceania	Océanie
9	Continent not defined	Continent non précisé

e	Code	Description
e	ABW	Aruba
	AFG	Afghanistan
	AGO	Angola
	AIA	Anguilla
	ALA	Åland Islands
	ALB	Albania
	AND	Andorra
	ANT	Netherlands Antilles
	ARE	United Arab Emirates Co

-	Code	Description
	F	Female
	М	Male
	NA	Not applicable
	Т	Both sexes

Un-coded Concepts

- Can be free-text: Any valid text can be used as a value for the concept.
 - Footnote
- Can have their format specified
 - Passport number: 10 letters and digits
 - Postal code: 5 digits
 - Birth rate: floating point number

Representation of concepts in SDMX

- **Dimensions** must be either coded or have their format specified.
 - Free text is not allowed.
- Attributes can be coded or un-coded; format may optionally be specified.
- Measures can be coded or un-coded; format may optionally be specified.

Group Exercise 2: Representation

- Working with your model, determine representation for each concept
 - Coded, formatted, free-text
- Develop code lists and formats for your concepts
 - Use any approach for your codes

Importance of Data Model

- Data model, represented by DSD, defines what data can be encoded and transmitted.
- Flaws in a DSD may have significant adverse impact on data exchange
 - Missing concepts
 - Incorrect role of concepts
 - Un-optimized model

Data Structure Definition: Design Considerations

- Parsimony
 - No redundant dimensions
 - Attributes attached at the highest possible level

• Simplicity

- "Mixed dimensions" are used to minimize the number of dimensions
- Can help avoid invalid combinations of key values
- Should be used with caution
- Opposite of "purity"

Data Structure Definition: Design Considerations (2)

- Unambiguousness
 - Data must retain meaning outside usual context
 - Do you supply country code with your data?
- Density
 - Data should be supplied for most or all of possible combinations of key values
 - Related to simplicity
- Orthogonality
 - Meaning of the value of concepts should be independent of each other
 - Helps avoid ambiguity

Source: Guidelines for the Design of SDMX Data Structure Definitions

DSD Design Tradeoffs: Simplicity vs Purity

- A *simple* model may increase maintenance costs
 - Codes frequently need to be added
- A *pure* model may increase the number of errors due its lower *density*
 - Some combinations of key values are impossible in reality but valid from the DSD point of view
- Splitting the *pure* model into multiple DSDs to improve *density* may increase maintenance costs
 - Multiple DSDs and other artefacts need to be maintained